We examined whether auxin/indole-3-acetic acid (Aux/IAA) proteins, which are key players in auxin-signal transduction, are involved in brassinosteroid (BR) responses. iaa7/axr2-1q2 and iaa17/axr3-3 mutants showed aberrant BR sensitivity and aberrant BR-induced gene expression in an organ-dependent mannerq3. Two auxin inhibitors were tested in terms of BR responses. Yokonolide B inhibited BR responses, whereas p-chlorophenoxyisobutyric acid did not inhibit BR responses. DNA microarray analysis revealed that 108 genes were up-regulated, while only eight genes were down-regulated in iaa7. Among the genes that were up- or down-regulated in axr2, 22% were brassinolide -inducible genes, 20% were auxin-inducible genes, and the majority were sensitive neither to BR nor to auxin. An inhibitor of BR biosynthesis, brassinazole, inhibited auxin induction of the DR5-GUSq4 gene, which consists of a synthetic auxin-response element, a minimum promoter, and a β-glucuronidaseq. These results suggest that Aux/IAA proteins function in auxin- and BR-signaling pathways, and that IAA proteins function as the signaling components modulating BR sensitivity in a manner dependent on organ type. © 2005 Blackwell Publishing Ltd.
CITATION STYLE
Nakamura, A., Nakajima, N., Goda, H., Shimada, Y., Hayashi, K. I., Nozaki, H., … Fujioka, S. (2006). Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant Journal, 45(2), 193–205. https://doi.org/10.1111/j.1365-313X.2005.02582.x
Mendeley helps you to discover research relevant for your work.