In recent years, concerns about the safety of laboratories have been caused by several serious accidents in school laboratories. Gas leaks in the laboratory are often difficult to detect and cause serious consequences. In this study, a comprehensive model based on the Bayesian network is established for the assessment of the gas leaks evolution process and consequences in school laboratories. The model can quantitatively evaluate the factors affecting the probability and consequences of gas leakage. The results show that a model is an effective tool for assessing the risk of gas leakage. Among the various factors, the unsafe behavior of personnel has the greatest impact on the probability of gas leakage, and the concentration of toxic and harmful gases is the main factor affecting the consequences of accidents. Since the probability distribution of each node is obtained based on the experience of experts, there is a deviation in the quantitative calculation of the probability of gas leakage and consequences, but does not affect the risk analysis. This study could quantitatively assess the probability and consequences of gas leakage in the laboratory, and identify vulnerabilities, which helps improve the safety management level of gas in the school laboratory and reducing the possibility of gas leakage posing a threat to personal safety.
CITATION STYLE
Zhang, X., Hu, X., Bai, Y., & Wu, J. (2020). Risk assessment of gas leakage from school laboratories based on the Bayesian network. International Journal of Environmental Research and Public Health, 17(2). https://doi.org/10.3390/ijerph17020426
Mendeley helps you to discover research relevant for your work.