1-Benzyl-3-phenyl-2-thiourea (BPTU) was studied as a steel corrosion inhibitor in 1.0 M HCl solution. Experimental methods were conducted including potentiodynamic polarization measurement (PPM), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. Quantum calculations were performed at B3LYP/6-311G(d,p). Hexamethylenetetramine (URO) was selected for comparison with BPTU. The results showed that BPTU with the concentration of 2 × 10-4 M and at the temperature of 30°C could protect the steel surface with the highest inhibition efficiency of 94.99% and 94.30% according to EIS and PPM, respectively. High temperature decreased BPTU's ability to inhibit the steel corrosion. The adsorption of BPTU on the steel surface is followed by the modified Langmuir isotherm. Quantum chemical calculations showed that the thiourea functional group is the main adsorption center of BPTU. The experimental results are completely consistent with theoretical calculations.
CITATION STYLE
Dinh, Q. H., Duong, T., & Pham Cam, N. (2021). A Study of 1-Benzyl-3-phenyl-2-thiourea as an Effective Steel Corrosion Inhibitor in 1.0 M HCl Solution. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/5519411
Mendeley helps you to discover research relevant for your work.