Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system

19Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Background: Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. Methodology/Principal Findings: RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. Conclusions/Significance: Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.

References Powered by Scopus

A decade of molecular biology of retinoic acid receptors

2666Citations
N/AReaders
Get full text

Embryonic retinoic acid synthesis is essential for early mouse post- implantation development

926Citations
N/AReaders
Get full text

Retinoic Acid Synthesis and Signaling during Early Organogenesis

856Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Retinoic acid signaling pathways in development and diseases

210Citations
N/AReaders
Get full text

Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI

65Citations
N/AReaders
Get full text

All-trans retinoic acid prevents oxidative stress-induced loss of renal tight junction proteins in type-1 diabetic model

49Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Wong, Y. F., Kopp, J. B., Roberts, C., Scambler, P. J., Abe, Y., Rankin, A. C., … Xu, Q. (2011). Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0016770

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 12

55%

Professor / Associate Prof. 5

23%

Researcher 3

14%

Lecturer / Post doc 2

9%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 7

39%

Medicine and Dentistry 6

33%

Biochemistry, Genetics and Molecular Bi... 4

22%

Chemical Engineering 1

6%

Save time finding and organizing research with Mendeley

Sign up for free