The explicit representation of context and subjectivity enables an information system to support multiple interpretations of the data it records. This is a crucial aspect of learning and innovation within scientific information systems. We present an ontology-based framework for context and subjectivity that integrates two lines of research: data provenance and ontological foundations of the Semantic Web. Data provenance provides a set of constructs for representing data history. We extend the definition of these constructs in order to describe multiple viewpoints or interpretations held within a domain. The W7 model, the Toulmin model, and the Proof Markup Language (PML) provide the Interlingua for creating multiple viewpoints of data in a machine-readable and sharable form. Example use cases in space sciences are used to demonstrate the feasibility and value of our approach. [ABSTRACT FROM AUTHOR]
CITATION STYLE
Narock, T., Yoon, V., & March, S. (2012). On the Role of Context and Subjectivity on Scientific Information Systems. Communications of the Association for Information Systems, 30. https://doi.org/10.17705/1cais.03012
Mendeley helps you to discover research relevant for your work.