Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway

29Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Postmenopausal osteoporosis (PMOP) poses a significant threat to women’s health worldwide. However, detailed molecular mechanism and therapeutic strategy for PMOP remain insufficient. Accumulating evidence suggests that miR-48-5p is implicated in the pathogenesis of osteoporosis. The present study aimed to determine the role and mechanism of miR-483-5p in PMOP. Results from PMOP patients demonstrated that miR-483-5p was up-regulated and SATB2 was down-regulated. Luciferase reporter assay identified SATB2 as a direct target gene of miR-483-5p. Experiments in MC3T3-E1 cells indicated that miR-483-5p mimic markedly inhibited cell viability as well as the expressions of OPG, RUNX2 and BMP2. And miR-483-5p inhibitor, SATB2-overexpressed lentiviruses (Lv-SATB2) or LY294002 (PI3K/AKT inhibitor) significantly reversed the above results. Similarly, PI3K/AKT signaling was activated by miR-483-5p mimic, and was inhibited in miR-483-5p inhibitor, Lv-SATB2 or LY294002 treated cells. In vivo experiments showed that miR-483-5p inhibitor significantly increased the bone mineral density and biomechanical parameters of femurs in ovariectomized (OVX) rats by targeting SATB2. In addition, the osteogenic differentiation and PI3K/AKT signaling were also regulated by miR-483-5p-SATB2 axis. Taken together, our findings indicated that miR-483-5p contributed to the pathogenesis of PMOP by inhibiting SATB2 and activating PI3K/AKT pathway. MiR-483-5p/SATB2 could be selected as a potential therapeutic target for PMOP.

Cite

CITATION STYLE

APA

Zhao, F., Xu, Y., Ouyang, Y., Wen, Z., Zheng, G., Wan, T., & Sun, G. (2021). Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway. Aging, 13(5), 6945–6956. https://doi.org/10.18632/aging.202552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free