A simple and effective hierarchical phrase reordering model

225Citations
Citations of this article
152Readers
Mendeley users who have this article in their library.

Abstract

While phrase-based statistical machine translation systems currently deliver state-of-the-art performance, they remain weak on word order changes. Current phrase reordering models can properly handle swaps between adjacent phrases, but they typically lack the ability to perform the kind of long-distance reorderings possible with syntax-based systems. In this paper, we present a novel hierarchical phrase reordering model aimed at improving non-local reorderings, which seamlessly integrates with a standard phrase-based system with little loss of computational efficiency. We show that this model can successfully handle the key examples often used to motivate syntax-based systems, such as the rotation of a prepositional phrase around a noun phrase. We contrast our model with reordering models commonly used in phrase-based systems, and show that our approach provides statistically significant BLEU point gains for two language pairs: Chinese-English (+0.53 on MT05 and +0.71 on MT08) and Arabic-English (+0.55 on MT05). © 2008 Association for Computational Linguistics.

Cite

CITATION STYLE

APA

Galley, M., & Manning, C. D. (2008). A simple and effective hierarchical phrase reordering model. In EMNLP 2008 - 2008 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference: A Meeting of SIGDAT, a Special Interest Group of the ACL (pp. 848–856). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1613715.1613824

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free