A Robust Automated Analog Circuits Classification Involving a Graph Neural Network and a Novel Data Augmentation Strategy

5Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Analog mixed-signal (AMS) verification is one of the essential tasks in the development process of modern systems-on-chip (SoC). Most parts of the AMS verification flow are already automated, except for stimuli generation, which has been performed manually. It is thus challenging and time-consuming. Hence, automation is a necessity. To generate stimuli, subcircuits or subblocks of a given analog circuit module should be identified/classified. However, there currently needs to be a reliable industrial tool that can automatically identify/classify analog sub-circuits (eventually in the frame of a circuit design process) or automatically classify a given analog circuit at hand. Besides verification, several other processes would profit enormously from the availability of a robust and reliable automated classification model for analog circuit modules (which may belong to different levels). This paper presents how to use a Graph Convolutional Network (GCN) model and proposes a novel data augmentation strategy to automatically classify analog circuits of a given level. Eventually, it can be upscaled or integrated within a more complex functional module (for a structure recognition of complex analog circuits), targeting the identification of subcircuits within a more complex analog circuit module. An integrated novel data augmentation technique is particularly crucial due to the harsh reality of the availability of generally only a relatively limited dataset of analog circuits’ schematics (i.e., sample architectures) in practical settings. Through a comprehensive ontology, we first introduce a graph representation framework of the circuits’ schematics, which consists of converting the circuit’s related netlists into graphs. Then, we use a robust classifier consisting of a GCN processor to determine the label corresponding to the given input analog circuit’s schematics. Furthermore, the classification performance is improved and robust by involving a novel data augmentation technique. The classification accuracy was enhanced from 48.2% to 76.6% using feature matrix augmentation, and from 72% to 92% using Dataset Augmentation by Flipping. A 100% accuracy was achieved after applying either multi-Stage augmentation or Hyperphysical Augmentation. Overall, extensive tests of the concept were developed to demonstrate high accuracy for the analog circuit’s classification endeavor. This is solid support for a future up-scaling towards an automated analog circuits’ structure detection, which is one of the prerequisites not only for the stimuli generation in the frame of analog mixed-signal verification but also for other critical endeavors related to the engineering of AMS circuits.

Cite

CITATION STYLE

APA

Deeb, A., Ibrahim, A., Salem, M., Pichler, J., Tkachov, S., Karaj, A., … Kyandoghere, K. (2023). A Robust Automated Analog Circuits Classification Involving a Graph Neural Network and a Novel Data Augmentation Strategy. Sensors, 23(6). https://doi.org/10.3390/s23062989

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free