Principle Component Analysis (PCA) is an appearance-based technique for extraction of feature extraction that is commonly used in computer vision and image processing. This technique suffers from illumination variations, thus knowing which illumination control method to be used in PCA-based face recognition system is very important. This paper applies three selected normalization techniques; Discrete Cosine Transform (DCT), Adaptive Histogram Equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to normalize face images. PCA was further used to extract features from the normalized face images. Euclidean distance was used to classify extracted features. The best recognition accuracy of 91.84% was obtained in DCT for ORL Database, while the best accuracy of 76% was achieved in DCT for FERET Database. The highest FAR of 0.9 was achieved in DCT for ORL Database, while the highest FAR of 0.5 was obtained in DCT and AHE for FERET Database. The highest FRR of 0.2821 was achieved in CLAHE for ORL Database, while 0.3000 was obtained in AHE for FERET Database. It was concluded that illumination control approaches have predominant effect on PCA–based facial recognition system. Keywords— Adaptive Histogram Equalization, Contrast Adaptive Histogram Equalization, Discrete Cosine Transform Illumination Normalization, Principal Component Analysis
CITATION STYLE
Abikoye, O. C., Shoyemi, I. F., & Aro, T. O. (2019). Comparative Analysis of Illumination Normalizations on Principal Component Analysis Based Feature Extraction for Face Recognition. FUOYE Journal of Engineering and Technology, 4(1). https://doi.org/10.46792/fuoyejet.v4i1.309
Mendeley helps you to discover research relevant for your work.