High (H) and Low (L) antibody responder lines of mice were produced by two independent bidirectional selective breedings for quantitative antibody responsiveness to heterologous erythrocytes (selection I and selection II). In both selections the antibody response to P. berghei antigens was 8- to 10-fold higher in H than in L lines. The charcter 'high response' presents an incomplete dominance of 18% in selection I and 67% in selection II. In selection II the variance analysis indicates that at least three independent loci intervene in the regulation of responsiveness to P. berghei antigens. The innate resistance and the protective efficacy of vaccination against P. berghei infection induced by parasitized erythrocytes was measured in H and L lines and in the interline hybrids F1, BcH, and BcL of selections I and II. No very significant difference was observed in the innate resistance to P. berghei infection between H and L mice of both selections. Vaccination induced a very efficient protection in the two H lines (94 and 95% survival), whereas only a weak protection was induced in the two L lines (16 and 31% survival); the degree of protection is intermediate in interline hybrids F1, BcH, and BcL. In both selections a good linear correlation was demonstrated between the level of vaccination-induced antibody and the degree of resistance measured as percentage of survival. The present results indicate that the vaccination-induced P. berghei immunity is essentially due to the antibody response, whereas the bactericidal activity of macrophages and the cell-mediated immunity do not play a determinant role.
CITATION STYLE
Heumann, A. M., Stiffel, C., Monjour, L., Bucci, A., & Biozzi, G. (1979). Correlation between genetic regulation of antibody responsiveness and protective immunity induced by Plasmodium berghei vaccination. Infection and Immunity, 24(3), 829–836. https://doi.org/10.1128/iai.24.3.829-836.1979
Mendeley helps you to discover research relevant for your work.