Comparison between Intra-Articular Injection of Infrapatellar Fat Pad (IPFP) Cell Concentrates and IPFP-Mesenchymal Stem Cells (MSCs) for Cartilage Defect Repair of the Knee Joint in Rabbits

7Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic method in regenerative medicine. Our previous research adopted a simple nonenzymatic strategy for the preparation of a new type of ready-to-use infrapatellar fat pad (IPFP) cell concentrates. The aim of this study was to compare the therapeutic efficacy of intra-articular (IA) injection of autologous IPFP cell concentrates and allogeneic IPFP-MSCs obtained from these concentrates in a rabbit articular cartilage defect model. IPFP-MSCs sprouting from the IPFP cell concentrates were characterized via flow cytometry as well as based on their potential for differentiation into adipocytes, osteoblasts, and chondrocytes. In the rabbit model, cartilage defects were created on the trochlear groove, followed by treatment with IPFP cell concentrates, IPFP-MSCs, or normal saline IA injection. Distal femur samples were evaluated at 6 and 12 weeks posttreatment via macroscopic observation and histological assessment based on the International Cartilage Repair Society (ICRS) macroscopic scoring system as well as the ICRS visual histological assessment scale. The macroscopic score and histological score were significantly higher in the IPFP-MSC group compared to the IPFP cell concentrate group at 12 weeks. Further, both treatment groups had higher scores compared to the normal saline group. In comparison to the latter, the groups treated with IPFP-MSCs and IPFP cell concentrates showed considerably better cartilage regeneration. Overall, IPFP-MSCs represent an effective therapeutic strategy for stimulating articular cartilage regeneration. Further, due to the simple, cost-effective, nonenzymatic, and safe preparation process, IPFP cell concentrates may represent an effective alternative to stem cell-based therapy in the clinic.

References Powered by Scopus

Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement

14697Citations
N/AReaders
Get full text

Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation

4908Citations
N/AReaders
Get full text

Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review

1278Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon

34Citations
N/AReaders
Get full text

Localized delivery of brain-derived neurotrophic factor from PLGA microspheres promotes peripheral nerve regeneration in rats

18Citations
N/AReaders
Get full text

Layer-specific stem cell differentiation in tri-layered tissue engineering biomaterials: Towards development of a single-stage cell-based approach for osteochondral defect repair

18Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Han, Y., Li, H., Zhou, R., Wu, J., Liu, Z., Wang, H., … Zhou, Y. (2021). Comparison between Intra-Articular Injection of Infrapatellar Fat Pad (IPFP) Cell Concentrates and IPFP-Mesenchymal Stem Cells (MSCs) for Cartilage Defect Repair of the Knee Joint in Rabbits. Stem Cells International, 2021. https://doi.org/10.1155/2021/9966966

Readers over time

‘21‘22‘23‘2402468

Readers' Seniority

Tooltip

Researcher 2

50%

Lecturer / Post doc 1

25%

PhD / Post grad / Masters / Doc 1

25%

Readers' Discipline

Tooltip

Medicine and Dentistry 3

50%

Engineering 2

33%

Biochemistry, Genetics and Molecular Bi... 1

17%

Save time finding and organizing research with Mendeley

Sign up for free
0