Planetary formation in the γ Cephei system

62Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

We numerically investigate under which conditions the planet detected at 2.1 AU from γ Cephei could form through the core-accretion scenario despite the perturbing presence of the highly eccentric companion star. We first show that the initial stage of runaway accretion of kilometer-sized planetesimals is possible within 2.5 AU from the central star only if large amounts of gas are present. In this case, gaseous friction induces periastron alignment of the orbits which reduces the otherwise high mutual impact velocities due to the companion's secular perturbations. The following stage of mutual accretion of large embryos is also modeled. According to our simulations, the giant impacts among the embryos always lead to a core of 10 M ⊕ within 10 Myr, the average lifetime of gaseous discs. However, the core always ends up within 1.5 AU from the central star. Either the core grows more quickly in the inner region of the disc, or it migrates inside by scattering the residual embryos.

Cite

CITATION STYLE

APA

Thébault, P., Marzari, F., Scholl, H., Turrini, D., & Barbieri, M. (2004). Planetary formation in the γ Cephei system. Astronomy and Astrophysics, 427(3), 1097–1104. https://doi.org/10.1051/0004-6361:20040514

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free