Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration

59Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We hypothesize that the tritrophic interaction between ants, the aphid Aphis jacobaeae, the moth Tyria jacobaeae, and the plant Senecio jacobaea can explain the genetic variation observed in pyrrolizidine alkaloid concentration in natural populations of S. jacobaea. The ant Lasius niger effectively defends S. jacobaea plants infested with A. jacobaeae against larvae of T. jacobaeae. S. jacobaea plants with A. jacobaeae which are defended by ants escape regular defoliation by T. jacobaeae. Plants with aphids and ants have a lower pyrrolizidine alkaloid concentration than plants without aphids and ants. When these data are fitted to an existing theoretical model for temporal variation in fitness it is shown that varying herbivore pressure by T. jacobaeae in interaction with ants defending aphid-infested plants with a low pyrrolizidine alkaloid concentration can lead to a stable polymorphism in pyrrolizidine alkaloid concentration. Costs of the production and maintenance of pyrrolizidine alkaloids are not accounted for in the model. © 1991 Springer-Verlag.

Cite

CITATION STYLE

APA

Vrieling, K., Smit, W., & van der Meijden, E. (1991). Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia, 86(2), 177–182. https://doi.org/10.1007/BF00317529

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free