Horizontal basal cells self-govern their neurogenic potential during injury-induced regeneration of the olfactory epithelium

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Horizontal basal cells (HBCs) residing within severely damaged olfactory epithelium (OE) mediate OE regeneration by differentiating into odorant detecting olfactory sensory neurons (OSNs) and other tissue supporting non-neuronal cell types. Within various regenerative tissues, the Notch signaling pathway can either positively or negatively regulate resident stem cell activity and potentially vary with tissue integrity. Although Notch1 specifies HBC dormancy in the uninjured OE, little is known about how HBCs are influenced by the Notch pathway following OE injury. Here, we show that HBCs depend on a functional inversion of the Notch pathway to appropriately mediate OE regeneration. At 24 hours post-injury, HBCs enhance Notch1-mediated signaling. Moreover, at 3 days post-injury when the regenerating OE is composed of multiple cell layers, HBCs enrich both Notch1 and the Notch ligand, Dll1. Notably, HBC-specific Notch1 knockout increases HBC quiescence and impairs HBC differentiation into neuronal progenitors and OSNs. Interestingly, complete HBC knockout of Dll1 only decreases differentiation of HBC-derived OSNs. These data underscore the context-dependent nature of Notch signaling. Furthermore, they reveal that HBCs regulate their own neurogenic potential after OE injury.

Cite

CITATION STYLE

APA

Louie, J. D., Bromberg, B. H., Zunitch, M. J., & Schwob, J. E. (2023). Horizontal basal cells self-govern their neurogenic potential during injury-induced regeneration of the olfactory epithelium. Development (Cambridge), 150(12). https://doi.org/10.1242/dev.201552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free