Comparison of MetaMap and cTAKES for entity extraction in clinical notes

62Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Clinical notes such as discharge summaries have a semi- or unstructured format. These documents contain information about diseases, treatments, drugs, etc. Extracting meaningful information from them becomes challenging due to their narrative format. In this context, we aimed to compare the automatic extraction capacity of medical entities using two tools: MetaMap and cTAKES. Methods: We worked with i2b2 (Informatics for Integrating Biology to the Bedside) Obesity Challenge data. Two experiments were constructed. In the first one, only one UMLS concept related with the diseases annotated was extracted. In the second, some UMLS concepts were aggregated. Results: Results were evaluated with manually annotated medical entities. With the aggregation process the result shows a better improvement. MetaMap had an average of 0.88 in recall, 0.89 in precision, and 0.88 in F-score. With cTAKES, the average of recall, precision and F-score were 0.91, 0.89, and 0.89, respectively. Conclusions: The aggregation of concepts (with similar and different semantic types) was shown to be a good strategy for improving the extraction of medical entities, and automatic aggregation could be considered in future works.

Author supplied keywords

Cite

CITATION STYLE

APA

Reátegui, R., & Ratté, S. (2018). Comparison of MetaMap and cTAKES for entity extraction in clinical notes. BMC Medical Informatics and Decision Making, 18. https://doi.org/10.1186/s12911-018-0654-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free