Continuous Identification of Freezing of Gait in Parkinson’s Patients Using Artificial Neural Networks and Instrumented Shoes

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Freezing of gait is an episodic phenomena faced by many patients with Parkinson’s disease. It is characterized by episodes during which patients are unable to generate effective forward stepping movements, despite absence of motor deficits. During the onset of the event, the patients are less stable with statistically different stride width, toe in/out angle and center of pressure distance. It has been postulated that the degree of freezing can be reduced by providing external sensory feedback to the patients during the event. However, this intervention could be facilitated by accurate identification of freezing events in real-time. This manuscript presents an Artificial Neural Network model which uses signals recorded by an instrumented footwear to predict if a walking subject is having a freezing episode. Our model presented in this paper is capable of continuously predicting freezing of gait events at a high temporal resolution of 50 Hz, using a 0.5 second window of data recorded by the instrumented shoes, with a sensitivity of 96.0±2.5%, a specificity of 99.6 ± 0.3%, a precision of 89.5 ± 5.9%, and an accuracy of 99.5 ± 0.4%. This algorithm was tested with data collected from 10 patients with Parkinson’s disease with frequent freezing of gait episodes.

References Powered by Scopus

Epidemiology of Parkinson's disease

3306Citations
N/AReaders
Get full text

Efficient backprop

1665Citations
N/AReaders
Get full text

Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes

1474Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Smart insoles review (2008-2021): Applications, potentials, and future

32Citations
N/AReaders
Get full text

Soft robotic apparel to avert freezing of gait in Parkinson’s disease

21Citations
N/AReaders
Get full text

Recent trends in wearable device used to detect freezing of gait and falls in people with Parkinson’s disease: A systematic review

16Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Prado, A., Kwei, S. K., Vanegas-Arroyave, N., & Agrawal, S. K. (2021). Continuous Identification of Freezing of Gait in Parkinson’s Patients Using Artificial Neural Networks and Instrumented Shoes. IEEE Transactions on Medical Robotics and Bionics, 3(3), 554–562. https://doi.org/10.1109/TMRB.2021.3091526

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

80%

Researcher 1

20%

Readers' Discipline

Tooltip

Engineering 5

83%

Medicine and Dentistry 1

17%

Save time finding and organizing research with Mendeley

Sign up for free