Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization

40Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

Abstract

Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine learning model that leverages various preprocessing steps, hyperparameter optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate the performance of our model, we merged three datasets from Kaggle that have similar features, creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting the presence or absence of heart disease. Such accurate predictions could significantly aid in early prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated with heart disease.

Cite

CITATION STYLE

APA

Asif, D., Bibi, M., Arif, M. S., & Mukheimer, A. (2023). Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization. Algorithms, 16(6). https://doi.org/10.3390/a16060308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free