Background: The weightings of iterative reconstruction algorithm can affect CT radiomic quantification. But, the effect of ASiR-V levels on the reproducibility of CT radiomic features between ultra-low-dose computed tomography (ULDCT) and low-dose computed tomography (LDCT) is still unknown. The purpose of study is to investigate whether adaptive statistical iterative reconstruction-V (ASiR-V) levels affect radiomic feature quantification using ULDCT and to assess the reproducibility of radiomic features between ULDCT and LDCT. Methods: Sixty-three patients with pulmonary nodules underwent LDCT (0.70±0.16 mSv) and ULDCT (0.15±0.02 mSv). LDCT was reconstructed with ASiR-V 50%, and ULDCT with ASiR-V 50%, 70%, and 90%. Radiomics analysis was applied, and 107 features were extracted. The concordance correlation coefficient (CCC) was calculated to describe agreement among ULDCTs and between ULDCT and LDCT for each feature. The proportion of features with CCC >0.9 among ULDCTs and between ULDCT and LDCT, and the mean CCC for all features between ULDCT and LDCT were also compared. Results: Sixty-three solid nodules (SNs) and 48 pure ground-glass nodules (pGGNs) were analyzed. There was no difference for the proportion of features in SNs among ULDCTs and between ULDCT and LDCT (P>0.05). The proportion of features in pGGNs were highest for ULDCT70% vs. 90% (78.5%) and ULDCT90% vs. LDCT50% (50.5%). In SNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.67±0.26, not different with that for ULDCT50% vs. LDCT50% (0.68±0.24) and ULDCT70% vs. LDCT50% (0.64±0.21) (P>0.05). In pGGNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.79±0.19, higher than that for ULDCT50% vs. LDCT50% (0.61±0.28) and ULDCT70% vs. LDCT50% (0.76±0.24) (P<0.05). Conclusions: ASiR-V levels significantly affected ULDCT radiomic feature quantification in pulmonary nodules, with stronger effects in pGGNs than in SNs. The reproducibility of radiomic features was highest between ULDCT90% and LDCT50%.
CITATION STYLE
Ye, K., Chen, M., Zhu, Q., Lu, Y., & Yuan, H. (2021). Effect of adaptive statistical iterative reconstruction-V (ASiR-V) levels on ultra-low-dose CT radiomics quantification in pulmonary nodules. Quantitative Imaging in Medicine and Surgery, 11(6). https://doi.org/10.21037/qims-20-932
Mendeley helps you to discover research relevant for your work.