The present study attempts to determine how some physiological and reproductive functions of olive tree (Olea europaea L., cv. Koroneiki) respond to enhanced UV-B radiation or heat. Enhanced UV-B radiation was applied to (1) three-year-old potted plants in an open nursery (corresponded to ca. 16% ozone depletion), and (2) in vitro cultured pollen samples (220 μmol m −2 s −1, PAR = 400−700 nm + UV-B at 7.5, 15.0, or 22.5 kJ m −2 d −1). Potted olive plants were also subjected to high temperature (38 ± 4°C) for 28 h to mimic heat levels regularly measured in olive growing areas. A significant effect of UV-B on photosynthetic rate was observed. However, enhanced UV-B radiation did affect neither chlorophyll nor carotenoid content, supporting previous reports on hardiness of the photosynthetic apparatus in olive. Increased superoxide dismutase activity was observed in UV-B-treated olive plants (+ 225%), whereas no effect was found in the plants under heat stress. Neither UV-B and nor heat did affect H 2 O 2 accumulation in the plant tissues. However, the same treatments resulted in enhanced lipid peroxidation (+ 18% for UV-B and + 15% for heat), which is likely linked to other reactive oxygen species. The increased guaiacol peroxidase activity observed in both treatments (+ 32% for UV-B and + 49% for heat) is related to the defense against oxidative membrane damage. The observed reduction in pollen germination (20–39%) and tube length (11–44%) could have serious implications on olive yields, especially for low fruit-setting cultivars or in years and environments with additional unfavorable conditions. UV-B and heat effects described here support the hypothesis that plant response to a given stressor is affected by the overall context and that a holistic approach is necessary to determine plant strategies for climate change adaptation.
CITATION STYLE
Koubouris, G. C., Kavroulakis, N., Metzidakis, I. T., Vasilakakis, M. D., & Sofo, A. (2015). Ultraviolet-B radiation or heat cause changes in photosynthesis, antioxidant enzyme activities and pollen performance in olive tree. Photosynthetica, 53(2), 279–287. https://doi.org/10.1007/s11099-015-0102-9
Mendeley helps you to discover research relevant for your work.