During acute myocardial infarction (AMI), ischemia leads to necrotic areas surrounded by border zones of reversibly damaged cardiomyocytes, showing membrane flip-flop. During reperfusion type IIA secretory phopholipase A 2 (sPLA2-IIA) induces direct cell-toxicity and facilitates binding of other inflammatory mediators on these cardiomyocytes. Therefore, we hypothesized that the specific sPLA2-IIA-inhibitor PX-18 would reduce cardiomyocyte death and infarct size in vivo. Wistar rats were treated with PX-18 starting minutes after reperfusion, and at day 1 and 2 post AMI. After 28 days hearts were analyzed. Furthermore, the effect of PX-18 on membrane flip-flop and apoptosis was investigated in vitro. PX-18 significantly inhibited sPLA2-IIA activity and reduced infarct size (reduction 73 ± 9%, P < 0.05), compared to the vehicle-treated group, without impairing wound healing. In vitro, PX-18 significantly reduced reversible membrane flip-flop and apoptosis in cardiomyocytes. However, no sPLA2-IIA activity could be detected, suggesting that PX-18 also exerted a protective effect independent of sPLA2-IIA. In conclusion, PX-18 is a potent therapeutic to reduce infarct size by inhibiting sPLA2-IIA, and possibly also by inhibiting apoptosis of cardiomyocytes in a sPLA2-IIA independent manner.
CITATION STYLE
Van Dijk, A., Krijnen, P. A. J., Vermond, R. A., Pronk, A., Spreeuwenberg, M., Visser, F. C., … Niessen, H. W. M. (2009). Inhibition of type 2A secretory phospholipase A2 reduces death of cardiomyocytes in acute myocardial infarction. Apoptosis, 14(6), 753–763. https://doi.org/10.1007/s10495-009-0350-x
Mendeley helps you to discover research relevant for your work.