Differential evolution optimal parameters tuning with artificial neural network

26Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Differential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users.

Cite

CITATION STYLE

APA

Centeno-Telleria, M., Zulueta, E., Fernandez-Gamiz, U., Teso-Fz-betoño, D., & Teso-Fz-betoño, A. (2021). Differential evolution optimal parameters tuning with artificial neural network. Mathematics, 9(4), 1–21. https://doi.org/10.3390/math9040427

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free