Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis

38Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Four specimens of the olive sea snake, Aipysurus laevis, were collected off the coast of Western Australia, and the venom proteome was characterized and quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three-finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP; 2.5%), and traces of a complement control module protein (CCM; 0.2%). Using a Toxicity Score, the most lethal components were determined to be short neurotoxins. Whole venom had an intravenous LD50 of 0.07 mg/kg in mice and showed a high phospholipase A2 activity, but no proteinase activity in vitro. Preclinical assessment of neutralization and ELISA immunoprofiling showed that BioCSL Sea Snake Antivenom was effective in cross-neutralizing A. laevis venom with an ED50 of 821 μg venom per mL antivenom, with a binding preference towards short neurotoxins, due to the high degree of conservation between short neurotoxins from A. laevis and Enhydrina schistosa venom. Our results point towards the possibility of developing recombinant antibodies or synthetic inhibitors against A. laevis venom due to its simplicity.

Cite

CITATION STYLE

APA

Laustsen, A. H., Gutiérrez, J. M., Rasmussen, A. R., Engmark, M., Gravlund, P., Sanders, K. L., … Lomonte, B. (2015). Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis. Toxicon, 107, 187–196. https://doi.org/10.1016/j.toxicon.2015.07.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free