TGF-β signaling involves a wide array of signaling molecules and multiple controlling events. Scaffold proteins create a functional proximity of signaling molecules and control the specificity of signal transduction. While many components involved in the TGF-β pathway have been elucidated, little is known about how those components are coordinated by scaffold proteins. Here, we show that Axin activates TGF-β signaling by forming a multimeric complex consisting of Smad7 and ubiquitin E3 ligase Arkadia. Axin depends on Arkadia to facilitate TGF-β signaling, as their small interfering RNAs reciprocally abolished the stimulatory effect on TGF-β signaling. Specific knockdown of Axin or Arkadia revealed that Axin and Arkadia cooperate with each other in promoting Smad7 ubiquitination. Pulse-chase experiments further illustrated that Axin significantly decreased the half-life of Smad7. Axin also induces nuclear export of Smad7. Interestingly, Axin associates with Arkadia and Smad7 independently of TGF-β signal, in contrast to its transient association with inactive Smad3. However, coexpression of Wnt-1 reduced Smad7 ubiquitination by downregulating Axin levels, underscoring the importance of Axin as an intrinsic regulator in TGF-β signaling. © 2006 European Molecular Biology Organization | All Rights Reserved.
CITATION STYLE
Liu, W., Rui, H., Wang, J., Lin, S., He, Y., Chen, M., … Lin, S. C. (2006). Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia. EMBO Journal, 25(8), 1646–1658. https://doi.org/10.1038/sj.emboj.7601057
Mendeley helps you to discover research relevant for your work.