The response of cells to mechanical inputs is a key determinant of cell behavior. In response to external forces, E-cadherin initiates signal transduction cascades that allow the cell to modulate its contractility to withstand the force. Much attention has focused on identifying the E-cadherin signaling pathways that promote contractility, but the negative regulators remain undefined. In this study, we identify SHP-2 as a force-activated phosphatase that negatively regulates E-cadherin force transmission by dephosphorylating vinculin Y822. To specifically probe a role for SHP-2 in E-cadherin mechanotransduction, we mutated vinculin so that it retains its phosphorylation but cannot be dephosphorylated. Cells expressing the mutant vinculin have increased contractility. This work provides a mechanism for inactivating E-cadherin mechanotransduction and provides a new method for specifically targeting the action of phosphatases in cells.
CITATION STYLE
Campbell, H., Heidema, C., Pilarczyk, D. G., & DeMali, K. A. (2018). SHP-2 is activated in response to force on E-cadherin and dephosphorylates vinculin Y822. Journal of Cell Science, 131(24). https://doi.org/10.1242/jcs.216648
Mendeley helps you to discover research relevant for your work.