Harnessing solar energy for electrocatalytic biorefinery using lignin-derived photothermal materials

20Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The bio-refinery of lignocellulose exhibits great potential for sustainable development. However, technical barriers for proper utilization of lignin and heavy energy consumption have challenged the profitability and sustainability of such biorefineries. Here, we efficiently converted lignin to photothermal materials (D-Lig-Fe) by the demethylation of lignin and coordinating with Fe3+, producing electricity that could be utilized for the electrocatalytic conversion of 5-hydromethyl-2-furaldehyde (HMF) to 2,5-furandicarboxylic acid (FDCA) when coupled with a thermoelectric generator (TEG) in the bio-refinery. Specifically, D-Lig-Fe exhibited robust and high photothermal efficiency (∼36%), producing electricity up to 1.6 V upon natural solar irradiation assisted by a Fresnel lens together with TEG. The as-generated electricity drove a high-yielding conversion of HMF to FDCA via NiCoB catalyst-based electrocatalysis in the bio-refinery. We anticipate that this research will help establish an efficient and practical approach toward an integrated biorefinery.

Cite

CITATION STYLE

APA

Zhao, X., Shi, L., Tian, B., Li, S., Liu, S., Li, J., … Chen, Z. (2023). Harnessing solar energy for electrocatalytic biorefinery using lignin-derived photothermal materials. Journal of Materials Chemistry A, 11(23), 12308–12314. https://doi.org/10.1039/d3ta01023f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free