Carbon turnover in peatland mesocosms exposed to different water table levels

225Citations
Citations of this article
252Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Changes of water table position influence carbon cycling in peatlands, but effects on the sources and sinks of carbon are difficult to isolate and quantify in field investigations due to seasonal dynamics and covariance of variables. We thus investigated carbon fluxes and dissolved carbon production in peatland mesocosms from two acidic and oligotrophic peatlands under steady state conditions at two different water table positions. Exchange rates and CO2, CH4 and DOC production rates were simultaneously determined in the peat from diffusive-advective mass-balances of dissolved CO2, CH4 and DOC in the pore water. Incubation experiments were used to quantify potential CO2 CH4, and DOC production rates. The carbon turnover in the saturated peat was dominated by the production of DOC (10-15 mmol m-2 d-1) with lower rates of DIC (6.1-8.5 mmol m-2 d-1) and CH4 (2.2-4.2 mmol m-2 d-1) production. All production rates strongly decreased with depth indicating the importance of fresh plant tissue for dissolved C release. A lower water table decreased area based rates of photosynthesis (24-42%), CH4 production (factor 2.5-3.5) and emission, increased rates of soil respiration and microbial biomass C, and did not change DOC release. Due to the changes in process rates the C net balance of the mesocosms shifted by 36 mmol m-2 d-1. According to our estimates the change in C mineralization contributed most to this change. Anaerobic rates of CO2 production rates deeper in the peat increased significantly by a factor of 2-3.5 (DOC), 2.9-3.9 (CO2), and 3-14 (CH4) when the water table was lowered by 30 cm. This phenomenon might have been caused by easing an inhibiting effect by the accumulation of CO2 and CH4 when the water table was at the moss surface.

Cite

CITATION STYLE

APA

Blodau, C., Basiliko, N., & Moore, T. R. (2004). Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry, 67(3), 331–351. https://doi.org/10.1023/B:BIOG.0000015788.30164.e2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free