Cut gardenia (Gardenia jasminoides Ellis) foliage is widely used as a vase material or flower bouquet indoors; however, insufficient indoor light accelerates its senescence, which shortens its viewing time. In this study, applying melatonin to delay gardenia leaf senescence when exposed to extremely low light condition (darkness), and the results showed that 1.0 mM was the effective concentration. At this concentration, chlorophyll contents and chlorophyll fluorescence parameters (Fv/Fm, Fv/F0 and Y(II)) increased, while the carotenoid and flavonoid contents decreased. Meanwhile, stress physiological indices decreased in response to exogenous melatonin application, whereas an increase in glutamine synthetase activity, water and soluble protein contents was observed. Moreover, exogenous melatonin application also reduced leaf programmed cell death under darkness, increased the endogenous melatonin level, expression levels of tryptophan decarboxylase gene, superoxide dismutase and catalase activities and the ascorbate-glutathione cycle, and maintained more intact anatomical structures. Furthermore, transcriptome sequencing revealed that various biological processes responded to exogenous melatonin application, including carbohydrate metabolism, amino acid metabolism, lipid metabolism, plant hormone signal transduction and pigment biosynthesis. Consequently, dark-induced leaf senescence in gardenia was significantly delayed. These results provided a better understanding for improving the ornamental value of cut gardenia foliage using melatonin.
CITATION STYLE
Zhao, D., Wang, R., Meng, J., Li, Z., Wu, Y., & Tao, J. (2017). Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia jasminoides Ellis): Leaf morphology, anatomy, physiology and transcriptome. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-10799-9
Mendeley helps you to discover research relevant for your work.