Supramolecular block copolymers composed of discrete blocks have promising properties for nanotechnology resulting from their ability to combine well-defined morphologies with good bulk material properties. Here, we present the impact of a well-defined siloxane block in either the main-chain or present as pendant grafts on the properties of supramolecular block copolymers that form ordered nanostructures with sub-5 nm domains. For this, two types of supramolecular block copolymers were synthesized based on the ureidopyrimidinone-urethane (UPy-UT) motif. In the first, oligodimethylsiloxanes (oDMS) of discrete length were end-capped with the UPy-UT motif, affording main-chain UPy-UT-Sin. In the second, the UPy-UT motif was grafted with discrete oDMS affording grafted UPy-UT-g-Si7. For the two systems, the compositions are similar; only the molecular architecture differs. In both cases, crystallization of the UPy-UT block is in synergy with phase segregation of the oDMS, resulting in the formation of lamellar morphologies. The grafted UPy-UT-g-Si7 can form long-range ordered lamellae, resulting in the formation of micrometer-sized 2D sheets of supramolecular polymers which show brittle properties. In contrast, UPy-UT-Sin forms a ductile material. As the compositions of both BCOs are similar, the differences in morphology and mechanical properties are a direct consequence of the molecular architecture. These results showcase how molecular design of the building block capable of forming block copolymers translates into controlled nanostructures and material properties as a result of the supramolecular nature of the interactions.
CITATION STYLE
Lamers, B. A. G., Van Der Tol, J. J. B., Vonk, K. M., De Waal, B. F. M., Palmans, A. R. A., Meijer, E. W., & Vantomme, G. (2020). Consequences of molecular architecture on the supramolecular assembly of discrete block co-oligomers. Macromolecules, 53(22), 10289–10298. https://doi.org/10.1021/acs.macromol.0c02237
Mendeley helps you to discover research relevant for your work.