The Colombian Andes foothills have seen an expansion of forest disturbance since the 1950s. While understanding the drivers of disturbance is important for quantifying the implications of land use change on regional biodiversity, methods for attributing disturbance to specific drivers of change at a high temporal and spatial resolution are still lacking in the Andes region, in part due to persistent cloud cover. Using 20 years of Landsat images (1996-2015) covering Picachos National Park in the Colombian Andes, we detected sub-annual forest cover disturbances using the Breaks For Additive Season and Trend (BFAST) Monitor algorithm; characterized different types of disturbance using spectral, spatial, and topographic indicators; and attributed causes of forest disturbance such as conversion to pasture, conversion to agriculture, and non-stand replacing disturbance (i.e., thinning) using a Random Forest (RF) classifier. Conversion to pasture has been the main driver of forest disturbance in Picachos, responsible for 11,395 ± 72 ha (17%) of forest cover loss, followed by non-stand replacing disturbance and conversion to agriculture. Disturbance detection had 96% overall agreement with validation data, although we had a high omission error of 21% primarily associated with forest to agriculture conversion. Other change drivers had a much more reliable attribution with forest to pasture conversion or non-stand-replacing disturbance, showing only 1-5% commission and 2-14% omission errors. Our results provide spatially-explicit information on sub-annual disturbances and associated drivers of change that are necessary for evaluating and improving domestic conservation efforts and establishing systematic ecological observations, which is currently absent from Colombia. While effective at revealing forest change dynamics in a geographically remote and socio-politically complex region like Picachos, our approach is highly automated and it can be easily extended to the rest of Andes-Amazon transition belt where low availability of remote sensing data and high cloud cover impede efforts at consistent monitoring of forest cover change dynamics and drivers.
CITATION STYLE
Murillo-Sandoval, P. J., Hilker, T., Krawchuk, M. A., & Van Den Hoek, J. (2018). Detecting and attributing drivers of forest disturbance in the Colombian andes using landsat time-series. Forests, 9(5). https://doi.org/10.3390/f9050269
Mendeley helps you to discover research relevant for your work.