Background: The mitotic Aurora-A kinase exerts crucial functions in maintaining mitotic fidelity. As a bona fide oncoprotein, Aurora-A aberrant overexpression leads to oncogenic transformation. Yet, the mechanisms by which Aurora-A enhances cancer cell survival remain to be elucidated. Results: Here, we found that Aurora-A overexpression was closely correlated with clinic stage and lymph node metastasis in tongue carcinoma. Aurora-A inhibitory VX-680 suppressed proliferation, induced apoptosis and markedly reduced migration in cancer cells. We further showed that insulin-like growth factor-1, a PI3K physiological activator, reversed VX-680-decreased cell survival and motility. Conversely, wortmannin, a PI3K inhibitor, combined with VX-680 showed a synergistic effect on inducing apoptosis and suppressing migration. In addition, Aurora-A inhibition suppressed Akt activation, and VX-680-induced apoptosis was attenuated by Myr-Akt overexpression, revealing a cross-talk between Aurora-A and PI3K pathway interacting at Akt activation. Significantly, we showed that suppression of Aurora-A decreased phosphorylated Akt and was associated with increased IkappaBα expression. By contrast, Aurora-A overexpression upregulated Akt activity and downregulated IkappaBα, these changes were accompanied by nuclear translocation of nuclear factor-κB and increased expression of its target gene Bcl-xL. Lastly, Aurora-A overexpression induced IkappaBα reduction was abrogated by suppression of Akt either chemically or genetically. Conclusion: Taken together, our data established that Aurora-A, via activating Akt, stimulated nuclear factor-κB signaling pathway to promote cancer cell survival, and promised a novel combined chemotherapy targeting both Aurora-A and PI3K in cancer treatment. © 2009 Yao et al; licensee BioMed Central Ltd.
CITATION STYLE
Yao, J. e., Yan, M., Guan, Z., Pan, C. bin, Xia, L. ping, Li, C. xing, … Liu, Q. (2009). Aurora-A down-regulates IkappaBα via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Molecular Cancer, 8. https://doi.org/10.1186/1476-4598-8-95
Mendeley helps you to discover research relevant for your work.