Evaluation of the Influence of Build Orientation on the Surface Roughness and Flexural Strength of 3D-Printed Denture Base Resin and Its Comparison with CAD-CAM Milled Denture Base Resin

6Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives The purpose of this study was to determine the surface roughness and flexural strength of a three-dimensional (3D)-printed denture base resin printed with two different build plate orientations and to compare them with a computer-aided design-computer-aided manufacture (CAD-CAM) milled denture base resin. Materials and Methods Sixty-six specimens (n = 22/group) were prepared by 3D printing and CAD-CAM technology. The group A and B specimens were 3D-printed bar-shaped denture base specimens printed at 120-degree and 135-degree build orientation, respectively, whereas group C specimens were milled using a CAD-CAM technology. The surface roughness was assessed using a noncontact profilometer with a 0.01 mm resolution and the flexural strength was determined using a three-point bend test. The maximum load in Newtons (N) at fracture, the flexural stress (MPa), and strain (mm/mm) was also measured. Statistical Analysis Data were analyzed by a statistical software package. One-way analysis of variance test was applied to determine whether significant differences existed among the study groups, followed by Bonferroni post-hoc test to determine which resin group significantly differed from the others in terms of flexural strength and surface roughness (p ≤ 0.05). Results The flexural stress (MPa) of group C was 200% of group A and 166% of group B. The flexural modulus was 192% of group A and 161% of group B. In contrast, group A had the lowest mean value among the three groups for all the parameters. No significant difference was seen between group A and group B. The mean roughness values of the CAD-CAM denture base resin specimens (group C) were the least (127356 nm) among all the three groups. The mean surface roughness of the 3D-printed denture base specimens (group A) was 1,34,234 nm and that of group B was (1,45,931 nm); however, it was statistically nonsignificant (p > 0.05) Conclusions The CAD-CAM resin displayed superior surface and mechanical properties compared to the 3D-printed resin. The two different build plate angles did not have any significant effect on the surface roughness of the 3D-printed denture base resin.

Cite

CITATION STYLE

APA

Alharethi, N. A. (2024). Evaluation of the Influence of Build Orientation on the Surface Roughness and Flexural Strength of 3D-Printed Denture Base Resin and Its Comparison with CAD-CAM Milled Denture Base Resin. European Journal of Dentistry, 18(1), 321–328. https://doi.org/10.1055/s-0043-1768972

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free