Fruit curving lowers the commercial value of cucumber and leads to significant economic losses. The mechanism driving the abnormal curving of cucumber is largely unknown. Through our previous work, we discovered that 2 days post-anthesis (DPA) was the key time point at which various phenotypic and genotypic characteristics of cucumber fruits are determined. Here, we analyzed the transcriptome of the concave (C1) and convex (C2) sides of curved fruits at 2 DPA by Gene Ontology (GO) enrichment and functional pathway enrichment analyses and identified auxin as a putative factor influencing fruit curvature. Changes in the curve angle in the fruits and exogenous auxin treatment analyses showed that asymmetric auxin distribution induces fruit curving. Identification of differentially expressed genes (DEGs) related to auxin and qPCR validation showed that CsYUC10b had the most significant differential expression when both sides of the curved fruits were compared. Gene functional analysis showed that the transcript levels of CsYUC10b and the auxin concentration were even on both sides of the fruit in CsYUC10b-overexpressing plants, which in turn contributed to an equal rate of growth of both sides of cucumber fruits and resulted in a straight shape of the fruits. Thus, we conclude that CsYUC10b promotes the formation of straight cucumber fruits, with possible applications in the production and breeding of cucumber.
CITATION STYLE
Li, S., Wang, C., Zhou, X., Liu, D., Liu, C., Luan, J., … Xin, M. (2020). The curvature of cucumber fruits is associated with spatial variation in auxin accumulation and expression of a YUCCA biosynthesis gene. Horticulture Research, 7(1). https://doi.org/10.1038/s41438-020-00354-5
Mendeley helps you to discover research relevant for your work.