Lack of shock absorption capability of conventional steel bollards causes significant vehicle damage and, consequently, high repair costs. This research studies a solution to reduce vehicle damage by inserting polylactic acid (PLA) honeycomb structures. A honeycomb-inserted bollard was designed based on numerical simulations using LS-DYNA, which yielded the bollard designed for actual vehicle-bollard collision experiments. Simulation efforts were focused on calculating the acceleration characteristics when a vehicle collides with steel and honeycomb-inserted bollards. Compared to the simulated steel bollards, 20 MPa yield-strength honeycomb-inserted bollard showed 0.017 s delay in the maximum acceleration occurrence time, reduction of the maximum acceleration of 37.4% of that of steel bollards, and a 13.1% reduction in the B-pillar maximum acceleration. Actual vehicle-bollard collision experiments, with a gyro-sensor installed at the test vehicle front bumper frame, also proved improved shock absorption characteristics of the honeycomb-inserted bollards. An experiment with honeycomb-inserted bollard showed a 0.783 s delay in the maximum acceleration occurrence time, a significant delay when compared to steel bollards. The maximum acceleration measured by the gyro-sensor was 0.35 × 103 m/s2 when the simulation predicted it to be 0.388 × 103 m/s2, proving the similarity in the simulations and experiments. Thus, this study of shock absorption characteristics promised reduced damage to vehicles and lower repair cost.
CITATION STYLE
Seon, S., Kim, K., Bae, C., & Yi, W. (2020). A study on shock absorption characteristics of honeycomb-inserted bollards. Applied Sciences (Switzerland), 10(9). https://doi.org/10.3390/app10093014
Mendeley helps you to discover research relevant for your work.