Helicobacter pylori, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11b+F4/80hiCD64+CX3CR1+ macrophages in the gastric lamina propria. Depletion of phagocytic cells by clodronate liposomes in wild-type mice resulted in a reduction of gastric H. pylori colonization compared with nontreated mice. PPARγ-deficient and macrophage-depleted mice presented decreased IL-10–mediated myeloid and T cell regulatory responses soon after infection. IL-10 neutralization during H. pylori infection led to increased IL-17–mediated responses and increased neutrophil accumulation at the gastric mucosa. In conclusion, we report the induction of IL-10–driven regulatory responses mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes that contribute to maintaining high levels of H. pylori loads in the stomach by modulating effector T cell responses at the gastric mucosa.
CITATION STYLE
Viladomiu, M., Bassaganya-Riera, J., Tubau-Juni, N., Kronsteiner, B., Leber, A., Philipson, C. W., … Hontecillas, R. (2017). Cooperation of Gastric Mononuclear Phagocytes with Helicobacter pylori during Colonization. The Journal of Immunology, 198(8), 3195–3204. https://doi.org/10.4049/jimmunol.1601902
Mendeley helps you to discover research relevant for your work.