Spectral imaging of proton aurora and twilight at Tromsø, Norway

25Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An imaging Echelle spectrograph designed for high-resolution studies of selected spectral features located in the visible spectrum was deployed from November 2001 until April 2003 in Tromsø, Norway. For moderately disturbed magnetic conditions, Tromsø is located on the equatorial edge of the evening auroral oval for several hours. Energetic protons are frequently the dominant particle energy source in this region. For this experiment, four spectral windows were selected, each around different emission features: H α (656.3 nm), Hβ (486.1 nm), N2+1NG 427.8 nm, and OI 777.4 nm. The 8° long slit of the spectrograph was centered on the magnetic zenith. This instrument provided simultaneous, high-resolution (∼0.1 nm) spectra of Hα and Hβ emissions, which offers a unique opportunity to investigate the Hα to Hβ Balmer decrement in proton aurora. Information on the cloud cover and on the overall auroral activity was provided by a large field of view (70°) conventional imaging spectrograph that spans the 350-800 nm spectral range. In this paper we describe both instruments and demonstrate their capabilities for the study of the H Balmer emissions in twilight and during auroral activity. Our high-resolution spectra taken in twilight could be used to observe the variability of the geocoronal component over time and to compare the derived variability with midlatitude sites. We conclude that the 0.1 nm spectral resolution is sufficient to identify and take into account contaminating OH and N2 1PG features in H α. emission profiles. Comparison of Hβ Doppler profiles observed at different locations (Tromsø, Poker Flat, Svalbard) in proton aurora is presented. Lummerzheim and Galand [2001] find that the shape of the violet wing of the Balmer profile is a more suitable indicator of the mean energy of the incident protons than the Doppler shift of the peak. Numerous uncertainties in measured and modeled Hα and H β line profiles preclude using the Balmer decrement as an indicator of the precipitating proton flux. Copyright 2004 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Galand, M., Baumgardner, J., Pallamraju, D., Chakrabarti, S., Lovhaug, U. P., Lummerzheim, D., … Rees, M. H. (2004). Spectral imaging of proton aurora and twilight at Tromsø, Norway. Journal of Geophysical Research: Space Physics, 109(A7). https://doi.org/10.1029/2003JA010033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free