Assessing Modeled CO 2 Retention and Rebreathing of a Facemask Designed for Efficient Delivery of Aerosols to Infants

  • Mundt C
  • Sventitskiy A
  • Cehelsky J
  • et al.
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background . New aerosol drugs for infants may require more efficient delivery systems, including face masks. Maximizing delivery efficiency requires tight-fitting masks with minimal internal mask volumes, which could cause carbon dioxide (CO 2 ) retention. An RNA-interference-based antiviral for treatment of respiratory syncytial virus in populations that may include young children is designed for aerosol administration. CO 2 accumulation within inhalation face masks has not been evaluated. Methods . We simulated airflow and CO 2 concentrations accumulating over time within a new facemask designed for infants and young children (PARI SMARTMASK ® Baby). A one-dimensional model was first examined, followed by 3-dimensional unsteady computational fluid dynamics analyses. Normal infant breathing patterns and respiratory distress were simulated. Results . The maximum average modeled CO 2 concentration within the mask reached steady state (3.2% and 3% for normal and distressed breathing patterns resp.) after approximately the 5th respiratory cycle. After steady state, the mean CO 2 concentration inspired into the nostril was 2.24% and 2.26% for normal and distressed breathing patterns, respectively. Conclusion . The mask is predicted to cause minimal CO 2 retention and rebreathing. Infants with normal and distressed breathing should tolerate the mask intermittently delivering aerosols over brief time frames.

Cite

CITATION STYLE

APA

Mundt, C., Sventitskiy, A., Cehelsky, J. E., Patters, A. B., Tservistas, M., Hahn, M. C., … DeVincenzo, J. P. (2012). Assessing Modeled    CO  2    Retention and Rebreathing of a Facemask Designed for Efficient Delivery of Aerosols to Infants. ISRN Pediatrics, 2012, 1–10. https://doi.org/10.5402/2012/721295

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free