Deep brain stimulation (DBS) is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. Despite the functional efficacy of DBS, which in parts is documented on the highest evidence level, the underlying mechanisms are still not completely understood. According to the current state of knowledge electrophysiological and functional data give evidence that high-frequency DBS has an inhibitory effect around the stimulation electrode whilst at the same time axons entering or leaving the stimulated brain area are exited leading to modulation of neuronal networks. The latter effect modifies pathological discharges of neurons in key structures of the basal ganglia network (e.g. irregular bursting activity, oscillations or synchronization) which are found in particular movement disorders such as Parkinson's disease or dystonia. The introduction of technical standards, such as the integration of high resolution MRI into computer-assisted treatment planning, in combination with special treatment planning software have contributed significantly to the reduction of severe surgical complications (frequency of intracranial hemorrhaging 1-3%) in recent years. Future developments will address the modification of hardware components of the stimulation system, the evaluation of new brain target areas, the simultaneous stimulation of different brain areas and the assessment of different stimulation paradigms (high-frequency vs low-frequency DBS). © Springer-Verlag 2010.
CITATION STYLE
Voges, J., & Krauss, J. K. (2010, June). Neurochirurgische und technische aspekte der tiefen hirnstimulation. Nervenarzt. https://doi.org/10.1007/s00115-010-2937-4
Mendeley helps you to discover research relevant for your work.