Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin.

136Citations
Citations of this article
140Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Lambda-cyhalothrin is a pyrethroid insecticide used for controlling pest insects in agriculture, public health, and in construction and households. Lambda-cyhalothrin is characterized by low vapor pressure and a low Henry's law constant but by a high octanol-water partition coefficient (K(ow)) and high water-solid-organic carbon partition coefficient (K(oc)) values. Lambda-cyhalothrin is quite stable in water at pH < 8, whereas it hydrolyzes to form HCN and aldehyde under alkaline conditions. Although lambda-cyhalothrin is relatively photostable under natural irradiation, with a half-life > 3 wk, its photolysis process is fast under UV irradiation, with a half-life < 10 min. The fate of lambda-cyhalothrin in aquatic ecosystems depends on the nature of system components such as suspended solids (mineral and organic particulates) and aquatic organisms (algae, macrophytes, or aquatic animals). Lambda-cyhalothrin residues dissolved in water decrease rapidly if suspended solids and/or aquatic organisms are present because lambda-cyhalothrin molecules are strongly adsorbed by particulates and plants. Adsorbed lambda-cyhalothrin molecules show decreased degradation rates because they are less accessible to breakdown than free molecules in the water column. On the other hand, lambda-cyhalothrin adsorbed to suspended solids or bottom sediments may provide a mechanism to mitigate its acute toxicity to aquatic organisms by reducing their short-term bioavailability in the water column. The widespread use of lambda-cyhalothrin has resulted in residues in sediment, which have been found to be toxic to aquatic organisms including fish and amphipods. Mitigation measures have been used to reduce the adverse impact of lambda-cyhalothrin contributed from agricultural or urban runoff. Mitigation may be achieved by reducing the quantity of runoff and suspended solid content in runoff through wetlands, detention ponds, or vegetated ditches.

Cite

CITATION STYLE

APA

He, L. M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-0-387-77030-7_3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free