3D point correspondence by minimum description length in feature space

8Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Finding point correspondences plays an important role in automatically building statistical shape models from a training set of 3D surfaces. For the point correspondence problem, Davies et al. [1] proposed a minimum-description- length-based objective function to balance the training errors and generalization ability. A recent evaluation study [2] that compares several well-known 3D point correspondence methods for modeling purposes shows that the MDL-based approach [1] is the best method. We adapt the MDL-based objective function for a feature space that can exploit nonlinear properties in point correspondences, and propose an efficient optimization method to minimize the objective function directly in the feature space, given that the inner product of any vector pair can be computed in the feature space. We further employ a Mercer kernel [3] to define the feature space implicitly. A key aspect of our proposed framework is the generalization of the MDL-based objective function to kernel principal component analysis (KPCA) [4] spaces and the design of a gradient-descent approach to minimize such an objective function. We compare the generalized MDL objective function on KPCA spaces with the original one and evaluate their abilities in terms of reconstruction errors and specificity. From our experimental results on different sets of 3D shapes of human body organs, the proposed method performs significantly better than the original method. © 2010 Springer-Verlag.

Cite

CITATION STYLE

APA

Chen, J. H., Zheng, K. C., & Shapiro, L. G. (2010). 3D point correspondence by minimum description length in feature space. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6313 LNCS, pp. 621–634). Springer Verlag. https://doi.org/10.1007/978-3-642-15558-1_45

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free