Investigations of a ZnO-TiO 2 binary oxide mixture during mechanical treatment were mainly focused on obtaining orthotitanate Zn 2 TiO 4 with a spinel structure. Due to the specific way of energy transfer during mechanical treatment using a high-energy ball mill, the system passes through low temperature ZnTiO 3 metatitanate phase formation. Mechanical activation was performed on an equimolar ratio mixture of ZnO and TiO 2 The anatase phase was previously submitted to heat treatment for achieving a starting mixture rich in a rutile phase. Milling conditions were preset for observing the formation of a low temperature ZnTiO 3 phase with a perovskite structure. The powder microstructure was characterized using scanning electron microscopy. A nitrogen gas sorption analyzer with the BET method was used to determine the specific surface area and porosity, indicating changes of powder sample properties during mechanical activation. Also, X ray powder diffractometry was applied to obtain the phase composition. Powders were then pressed into pellets and their compressibility was observed through density changes. According to microstructures obtained by scanning electron microscopy analysis, the system underwent a primary and secondary agglomeration process. Specific surface area measurements supported that conclusion. Compressibility investigations established the difference between compressibility of the non-activated mixture and activated powders. X-ray diffraction analysis revealed that a perovskite structure forms simultaneously with a spinel phase during the process of mechanical activation.
CITATION STYLE
Labus, N., Obradović, N., Srećković, T., Mitić, V., & Ristić, M. M. (2005). Influence of mechanical activation on synthesis of zinc metatitanate. Science of Sintering, 37(2), 115–122. https://doi.org/10.2298/SOS0502115L
Mendeley helps you to discover research relevant for your work.