Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties

778Citations
Citations of this article
295Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Three mammalian hyaluronan synthase genes, HAS1, HAS2, and HAS3, have recently been cloned. In this study, we characterized and compared the enzymatic properties of these three HAS proteins. Expression of any of these genes in COS-1 cells or rat 3Y1 fibroblasts yielded de novo formation of a hyaluronan coat. The pericellular coats formed by HAS1 transfectants were significantly smaller than those formed by HAS2 or HAS3 transfectants. Kinetic studies of these enzymes in the membrane fractions isolated from HAS transfectants demonstrated that HAS proteins are distinct from each other in enzyme stability, elongation rate of HA, and apparent K(m) values for the two substrates UDP-GlcNAc and UDP-GlcUA. Analysis of the size distributions of hyaluronan generated in vitro by the recombinant proteins demonstrated that HAS3 synthesized hyaluronan with a molecular mass of 1 x 105 to 1 x 106 Da, shorter than those synthesized by HAS1 and HAS2 which have molecular masses of 2 x 105 to ~2 x 106 Da. Furthermore, comparisons of hyaluronan secreted into the culture media by stable HAS transfectants showed that HAS1 and HAS3 generated hyaluronan with broad size distributions (molecular masses of 2 x 105 to ~2 x 106 Da), whereas HAS2 generated hyaluronan with a broad but extremely large size (average molecular mass of >2 x 106 Da). The occurrence of three HAS isoforms with such distinct enzymatic characteristics may provide the cells with flexibility in the control of hyaluronan biosynthesis and functions.

Cite

CITATION STYLE

APA

Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., … Kimata, K. (1999). Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. Journal of Biological Chemistry, 274(35), 25085–25092. https://doi.org/10.1074/jbc.274.35.25085

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free