Properties and use of novel replication-competent vectors based on semliki forest virus

16Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Semliki Forest virus (SFV) has a positive strand RNA genome and infects different cells of vertebrates and invertebrates. The 5' two-thirds of the genome encodes non-structural proteins that are required for virus replication and synthesis of subgenomic (SG) mRNA for structural proteins. SG-mRNA is generated by internal initiation at the SG-promoter that is located at the complementary minus-strand template. Different types of expression systems including replication-competent vectors, which represent alphavirus genomes with inserted expression units, have been developed. The replication-competent vectors represent useful tools for studying alphaviruses and have potential therapeutic applications. In both cases, the properties of the vector, such as its genetic stability and expression level of the protein of interest, are important. Results. We analysed 14 candidates of replication-competent vectors based on the genome of an SFV4 isolate that contained a duplicated SG promoter or an internal ribosomal entry site (IRES)-element controlled marker gene. It was found that the IRES elements and the minimal -21 to +5 SG promoter were non-functional in the context of these vectors. The efficient SG promoters contained at least 26 residues upstream of the start site of SG mRNA. The insertion site of the SG promoter and its length affected the genetic stability of the vectors, which was always higher when the SG promoter was inserted downstream of the coding region for structural proteins. The stability also depended on the conditions used for vector propagation. A procedure based on the in vitro transcription of ligation products was used for generation of replication-competent vector-based expression libraries that contained hundreds of thousands of different genomes, and maintained genetic diversity and the ability to express inserted genes over five passages in cell culture. Conclusion. The properties of replication-competent vectors of alphaviruses depend on the details of their construction. In the case of SFV4, such vectors should contain the SG promoter with structural characteristics for this isolate. The main factor for instability of SFV4-based replication-competent vectors was the deletion of genes of interest, since the resulting shorter genomes had a growth advantage over the original vector.

Cite

CITATION STYLE

APA

Rausalu, K., Iofik, A., Ülper, L., Karo-Astover, L., Lulla, V., & Merits, A. (2009). Properties and use of novel replication-competent vectors based on semliki forest virus. Virology Journal, 6. https://doi.org/10.1186/1743-422X-6-33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free