On the Duality of Teleportation and Dense Coding

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Quantum teleportation is a quantum communication primitive that allows a long-distance quantum channel to be built using pre-shared entanglement and one-way classical communication. However, the quality of the established channel crucially depends on the quality of the pre-shared entanglement. In this work, we revisit the problem of using noisy entanglement for the task of teleportation. We first show how this problem can be rephrased as a state discrimination problem. In this picture, a quantitative duality between teleportation and dense coding emerges in which every Alice-to-Bob teleportation protocol can be repurposed as a Bob-to-Alice dense coding protocol, and the quality of each protocol can be measured by the success probability in the same state discrimination problem. One of our main results provides a complete characterization of the states that offer no advantage in one-way teleportation protocols over classical states, thereby offering a new and intriguing perspective on the long-standing open problem of identifying such states. This also yields a new proof of the known fact that bound entangled states cannot exceed the classical teleportation threshold. Moreover, our established duality between teleportation and dense coding can be used to show that the exact same states are unable to provide a non-classical advantage for dense coding as well. We also discuss the duality from a communication capacity point of view, deriving upper and lower bounds on the accessible information of a dense coding protocol in terms of the fidelity of its associated teleportation protocol. A corollary of this discussion is a simple proof of the previously established fact that bound entangled states do not provide any advantage in dense coding.

Cite

CITATION STYLE

APA

Chitambar, E., & Leditzky, F. (2024). On the Duality of Teleportation and Dense Coding. IEEE Transactions on Information Theory, 70(5), 3529–3537. https://doi.org/10.1109/TIT.2023.3331821

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free