Strongly polynomial algorithms for the unsplittable flow problem

38Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We provide the first strongly polynomial algorithms with the best approximation ratio for all three variants of the unsplittable flow problem (UFP). In this problem we are given a (possibly directed) capacitated graph with n vertices and m edges, and a set of terminal pairs each with its own demand and profit. The objective is to connect a subset of the terminal pairs each by a single flow path as to maximize the total profit of the satisfied terminal pairs subject to the capacity constraints. Classical UFP, in which demands must be lower than edge capacities, is known to have an O(√m) approximation algorithm. We provide the same result with a strongly polynomial combinatorial algorithm. The extended UFP case is when some demands might be higher than edge capacities. For that case we both improve the current best approximation ratio and use strongly polynomial algorithms. We also use a lower bound to show that the extended case is provably harder than the classical case. The last variant is the bounded UFP where demands are at most K of the minimum edge capacity. Using strongly polynomial algorithms here as well, we improve the currently best known algorithms. Specifically, for K = 2 our results are better than the lower bound for classical UFP thereby separating the two problems. © 2001 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Azar, Y., & Regev, O. (2001). Strongly polynomial algorithms for the unsplittable flow problem. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2081, 15–29. https://doi.org/10.1007/3-540-45535-3_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free