Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network

102Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

Abstract

Road extraction is one of the most significant tasks for modern transportation systems. This task is normally difficult due to complex backgrounds such as rural roads that have heterogeneous appearances with large intraclass and low interclass variations and urban roads that are covered by vehicles, pedestrians and the shadows of surrounding trees or buildings. In this paper, we propose a novel method for extracting roads from optical satellite images using a refined deep residual convolutional neural network (RDRCNN) with a postprocessing stage. RDRCNN consists of a residual connected unit (RCU) and a dilated perception unit (DPU). The RDRCNN structure is symmetric to generate the outputs of the same size. A math morphology and a tensor voting algorithm are used to improve RDRCNN performance during postprocessing. Experiments are conducted on two datasets of high-resolution images to demonstrate the performance of the proposed network architectures, and the results of the proposed architectures are compared with those of other network architectures. The results demonstrate the effective performance of the proposed method for extracting roads from a complex scene.

Cite

CITATION STYLE

APA

Gao, L., Song, W., Dai, J., & Chen, Y. (2019). Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free