Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes

78Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Oxygen-derived free radicals (O-Rs) are thought to induce alterations in cardiac electrical activity; however, the underlying membrane ionic currents affected by O-Rs and the mechanisms by which O-Rs induce their effects on ion channels in the heart are not well defined. In this study, we investigated the time-dependent changes in resting membrane potential and action potential configuration and changes in steady-state membrane currents in guinea pig ventricular myocytes after intracellular application of an O-R-generating system. O-Rs were generated from the combination of dihydroxyfumaric acid (3 mM) and FeCl3: ADP (0.05:0.5 mM) added to the pipette solution that was used to record membrane potential and currents via the whole-cell variant of the patch-clamp technique. Intracellular exposure of myocytes to the O-R-generating solution induced three stages of changes: 1) an early depolarization (5-10 mV) and an increase in action potential duration accompanied by a decrease in resting inward rectifying K+ current conductance, 2) delayed afterdepolarizations and triggered activity caused by the activation of transient inward current mediated by Na+-Ca2+ exchange, with failure to repolarize and sustained depolarization between -35 and -20 mV, reflecting the stimulation of nonselective cation current, and 3) a late stage of marked decline in action potential duration, hyperpolarization, and loss of excitability accompanied by activation of the outward current through ATP-sensitive K+ channels. These alterations in electrical activity and membrane currents could be prevented by pretreatment with N-(2-mercaptopropionyl)glycine (500 μM), a scavenger of hydroxyl free radicals. The alterations associated with stages 1 and 2 but not stage 3 were completely abolished on intracellular Ca2+ chelation (5 mM EGTA in the pipette solution) or disruption of sarcoplasmic reticulum Ca2+ handling with ryanodine (10 μM). This study shows that intracellular O-R stress causes specific alterations in membrane ionic currents, leading to changes in resting membrane potential and action potential configuration. Moreover, the data indicate that an elevation in intracellular Ca2+ due to abnormal Ca2+ handling by the sarcoplasmic reticulum is a cause of some of the alterations in membrane currents during O-R stress.

Cite

CITATION STYLE

APA

Jabr, R. I., & Cole, W. C. (1993). Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circulation Research, 72(6), 1229–1244. https://doi.org/10.1161/01.res.72.6.1229

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free