Let (R, G) be a pair consisting of an elliptic root system R and a marking G of R. Assume that the attached elliptic Dynkin diagram Γ(R, G) is simply-laced. To the simply-laced elliptic root system, we associate three Lie algebras, explained in 1), 2) and 3) below. The main result of the present paper is to show that all three algebras are isomorphic. 1) The first one, studied in §3, is the subalgebra Q(R) generated by the highest vector eα for all α ∈ R in the quotient Lie algebra VQ(R)/DVQ(R) of the lattice vertex algebra attached to the elliptic root lattice Q(R). 2) The second algebra e(Γell), studied in §4, is presented by the Chevalley generators and the generalized Serre relations attached to the elliptic Dynkin diagram Γell = Γ(R, G). 3) The third algebra, studied in §5, is defined as an amalgamation of an affine Heisenberg algebra and an affine Kac-Moody algebra together with the finite amalgamation relations. © 2000, Research Institute for Mathematical Sciences. All rights reserved.
CITATION STYLE
Saito, K., & Yoshii, D. (2000). Extended Affine Root System IV (Simply-Laced Elliptic Lie Algebras). Publications of the Research Institute for Mathematical Sciences, 36(3), 385–421. https://doi.org/10.2977/prims/1195142952
Mendeley helps you to discover research relevant for your work.