$R$-Theory for Markov Chains on a General State Space I: Solidarity Properties and $R$-Recurrent Chains

  • Tweedie R
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

This paper develops, for a Markov chain $\{X_n\}$ on a general space $(\mathscr{X}, \mathscr{F})$ with $n$-step transition probabilities $P^n(x, A), x \in \mathscr{X}, A \in \mathscr{F}$, a theory analogous to that of Vere-Jones for Markov chains on the integers. If the chain is $\phi$-irreducible there is a partition $\mathscr{K}$ of $\mathscr{X}$ such that $\phi$-almost all of the power series $G_z(x, A) = \sum_n P^n(x, A)z^n$ have a common radius of convergence $R$ for $A$ in any element of $\mathscr{K}$, and they all diverge ($R$-recurrence) or all converge ($R$-transience) for $z = R$. The $R$-recurrent case is then investigated, and it is shown that there exist essentially unique non-zero solutions $Q, f$ to the $R$-subinvariant equations $Q \geqq RQP$ and $f \geqq RPf$, and that $Q$ and $f$ satisfy these inequalities with equality: a relationship between $Q$ and $f$ and first-entrance probabilities is also established. Further, if $\{X_n\}$ is aperiodic, $\lim_{n\rightarrow\infty} R^nP^n(x, A) = f(x)Q(A)/\int_\mathscr{X} f(y)Q(dy)$ for almost all $x \in \mathscr{X}$ and $A$ in any element of a second partition. The methods used are probabilistic and depend mainly on generating function techniques: it is pointed out that these techniques do not depend on the substochasticity of the transition probabilities, and hence the results are true in a much wider context.

Cite

CITATION STYLE

APA

Tweedie, R. L. (2007). $R$-Theory for Markov Chains on a General State Space I: Solidarity Properties and $R$-Recurrent Chains. The Annals of Probability, 2(5). https://doi.org/10.1214/aop/1176996552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free