The chemical composition of the investigated gorgonians showed a high level of individual variation and the colonies, according to their major contributors, were assigned to 10 distinct chemical profiles, among which A, C, E, and G were the most abundant ones. From the metabolites identified in the present study, either by means of GC/MS or using NMR techniques after conventional separation procedures, the novel cyclic ether 5,10-epoxymuurolane is found in significant quantities in D and I chemical profiles. Furanotriene, isofuranotriene and furanodiene could be referred as the most common metabolites of the genus, since they are found in 6 out of 10 chemical profiles. Isosericenine is, also, a significant contributor of H and I chemical profiles. A number of sesquiterpene hydrocarbons, such as curzerene, bicyclogermacrene, valencene, β-bourbonene and β-elemene, along with the oxygenated sesquiterpenes elemanolide and furoventalene, are present at varying concentrations in the majority of the chemical profiles. Metabolites of high discriminant value are: α-himachalene for the K chemical profile, α-santalene and its oxygenated derivatives for the G chemical profile and the three geometrical isomers of germacrone for the F chemical profile. Several chemical profiles showed narrow geographic distribution. Most of the chemical profiles are located in the north, while F inhabits mainly southern sites and the others are equally distributed. Finally, 91% of the chemical profiles of the gorgonian colonies appeared to grow in all depths, while 9% did not inhabit deep-water environments. Most chemical profiles are less frequent at higher water depths with the exception of chemical profiles A and C.
CITATION STYLE
Roussis, V., Vagias, C., Tsitsimpikou, C., & Diamantopoulou, N. (2000). Chemical variability of the volatile metabolites from the caribbean corals of the genus Gorgonia. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 55(5–6), 431–441. https://doi.org/10.1515/znc-2000-5-620
Mendeley helps you to discover research relevant for your work.