srfA displays a complex temporal and cell type-specific pattern of expression in Dictyostelium and is expressed by most of its cell types at some stage of their development. This complexity is achieved by the use of alternative promoters. The promoter activity of the proximal region was found to be restricted to a subset of prestalk cells. Little or no associated expression was observed in the lower cup and basal disc during culmination. The middle promoter region was preferentially active in prestalk cells under usual conditions of filter development. Interestingly, during slug migration, the activity of this promoter in posterior prespore cells was strongly induced. The distal region displayed a dual pattern of expression. Thus, before culmination, this region drove lacZ expression in a few cells scattered along the entire structure. However, intense lacZ staining was found in the spores by the end of culmination. We have previously reported that srfA expression is essential for spore differentiation (R. Escalante and L. Sastre, Development 125, 3801-3808). Our novel finding of the expression of the gene in prestalk cells before culmination suggested that it might play additional roles in Dictyostelium development. The study of knockout strains revealed that srfA is also required for proper slug migration. Spore differentiation and slug migration defects were rescued by reexpression of srfA in the null mutant background, under the appropriate promoter control. The expression of srfA under the activity of the distal promoter region was able to rescue spore differentiation but not slug migration. Conversely, reexpression under the control of the middle promoter rescued slug morphogenesis and migration. Our results demonstrate that the correct spatial and temporal pattern of expression of srfA is essential for the different functions that this transcription factor plays in development. © 2001 Academic Press.
CITATION STYLE
Escalante, R., Vicente, J. J., Moreno, N., & Sastre, L. (2001). The MADS-box gene srfA is expressed in a complex pattern under the control of alternative promoters and is essential for different aspects of Dictyostelium development. Developmental Biology, 235(2), 314–329. https://doi.org/10.1006/dbio.2001.0303
Mendeley helps you to discover research relevant for your work.